Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.

Sheriff, Lozan and Alanazi, Asma and Ward, Lewis S C and Ward, Carl and Munir, Hafsa and Rayes, Julie and Alassiri, Mohammed and Watson, Steve P and Newsome, Phil N and Rainger, G E and Kalia, Neena and Frampton, Jon and McGettrick, Helen M and Nash, Gerard B (2018) Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion. Stem cells (Dayton, Ohio), 36 (7). pp. 1062-1074. ISSN 1549-4918.

Full text not available from this repository.
Official URL: https://stemcellsjournals.onlinelibrary.wiley.com/...

Abstract

We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018;36:1062-1074.

Item Type: Article
Subjects: QW Microbiology. Immunology
Divisions: Planned IP Care
Related URLs:
Depositing User: Jennifer Manders
Date Deposited: 29 Aug 2019 13:04
Last Modified: 29 Aug 2019 13:04
URI: http://www.repository.uhblibrary.co.uk/id/eprint/2328

Actions (login required)

View Item View Item