Merging Information From Infrared and Autofluorescence Fundus Images for Monitoring of Chorioretinal Atrophic Lesions.

Ometto, Giovanni, Montesano, Giovanni, Sadeghi Afgeh, Saman, Lazaridis, Georgios, Liu, Xiaoxuan, Keane, Pearse A, Crabb, David P and Denniston, Alastair K (2020) Merging Information From Infrared and Autofluorescence Fundus Images for Monitoring of Chorioretinal Atrophic Lesions. Translational vision science & technology, 9 (9). p. 38. ISSN 2164-2591.

[img]
Preview
Text (PDF file format)
Translational.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (6MB) | Preview
Official URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC74530...

Abstract

Purpose

To develop a method for automated detection and progression analysis of chorioretinal atrophic lesions using the combined information of standard infrared (IR) and autofluorescence (AF) fundus images.

Methods

Eighteen eyes (from 16 subjects) with punctate inner choroidopathy were analyzed. Macular IR and blue AF images were acquired in all eyes with a Spectralis HRA+OCT device (Heidelberg Engineering, Heidelberg, Germany). Two clinical experts manually segmented chorioretinal lesions on the AF image. AF images were aligned to the corresponding IR. Two random forest models were trained to classify pixels of lesions, one based on the AF image only, the other based on the aligned IR-AF. The models were validated using a leave-one-out cross-validation and were tested against the manual segmentation to compare their performance. A time series from one eye was identified and used to evaluate the method based on the IR-AF in a case study.

Results

The method based on the AF images correctly classified 95% of the pixels (i.e., in vs. out of the lesion) with a Dice's coefficient of 0.80. The method based on the combined IR-AF correctly classified 96% of the pixels with a Dice's coefficient of 0.84.

Conclusions

The automated segmentation of chorioretinal lesions using IR and AF shows closer alignment to manual segmentation than the same method based on AF only. Merging information from multimodal images improves the automatic and objective segmentation of chorioretinal lesions even when based on a small dataset.

Translational Relevance

Merged information from multimodal images improves segmentation performance of chorioretinal lesions.

Item Type: Article
Subjects: WW Eyes. Ophthalmology
Divisions: Ambulatory Care > Ophthalmology
Related URLs:
Depositing User: Mrs Yolande Brookes
Date Deposited: 09 Oct 2020 16:17
Last Modified: 09 Oct 2020 16:17
URI: http://www.repository.uhblibrary.co.uk/id/eprint/3533

Actions (login required)

View Item View Item